Understanding nuclear structure provides essential insights into the properties of atomic nuclei. In this paper, details of the nuclear structure of $^{\rm 129}$Xe, such as the quadrupole deformation and the nuclear diffuseness, are studied by extensive measurements of anisotropic-flow-related observables in Xe$-$Xe collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.44$ TeV with the ALICE detector at the LHC. The results are compared with those from Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV for a baseline, given that the $^{\rm 208}$Pb nucleus is not deformed. Furthermore, comprehensive comparisons are performed with a state-of-the-art hybrid model using IP-Glasma+MUSIC+UrQMD. It is found that among various IP-Glasma+MUSIC+UrQMD calculations with different values of nuclear parameters, the one using a nuclear diffuseness parameter of $a_0=0.492$ and a nuclear quadrupole deformation parameter of $\beta_2=0.207$ provides a better description of the presented flow measurements. These studies represent an important step towards a thorough exploration of the imaging power of nuclear collisions at ultrarelativistic energy and the search for the imprint of nuclear structure on various flow observables in heavy-ion collisions at the LHC. The findings demonstrate the potential of nuclear structure studies at the TeV energy scale and highlight that the LHC experiments can complement existing low-energy experiments on nuclear structure studies.
Submitted to: PLB
e-Print: arXiv:2409.04343 | PDF | inSPIRE
CERN-EP-2024-228
Figure group